Product Description
Product description
Material |
Materials for silicon,fluorine,NBR,FPM,EPDM,SILCONE ACM,HNBR |
Inspection Equipments | Excellent chemical and physical property, excellent oil- resistance, high temperature stability, etc. |
Tolerance | +/-0.05mm |
Drawing Format | PDF/DWG/DXF/IGS/STEP,etc |
Application field | Parts are used on vehicles, printing machines, food processing machines, textile machines, electronic machines, etc. |
Manufacturing process | CNC machining Broaching, Drilling, Milling, Other Machining Services, Rapid Prototyping, Turning, |
Shape | As per your drawing Or your sample |
Color service | Customization |
QC inspection |
Make sure 100% inspection before the delivery |
Advantages | Maintenance,acturally HRC coupling doesn’t need maintenance. |
Environmental, elastic components make HRC coupling applies to a variety of working conditions. | |
Reliable transmission, in case of elastic component is damaged, the dog segment wichcasted siamesedly still keep the transmission processing reliably. |
|
Economic, HRC couplings have already been made of optimization design,which make transmission power match the transmission shaft diameter. |
|
Good recovery capacity, elastic components can reduce the load at the CZPT moments, and the deviation is a major consideration when designing. | |
Adaptability of misalignment, HRC can coupling contains parallel shift, angle shift and axis shift which happen some times. |
Application and analysis
Our warehouse
Custom rubber parts
Custom plastic parts
Packing & Delivery
Packaging Details: plastic bag packing inside, carton packing outside, or customized packing.
Port:Xihu (West Lake) Dis.g port, ZheJiang city.
Lead Time :
Quantity(Pieces) | 1 – 1000 | 1001 – 10000 | 10001 – 50000 | >50000 |
Est. Time(days) | 5 | 12 | 18 | To be negotiated |
Place order steps
Our Services:
1. Convenient: 24th Hours sales/After-sales Service online or on the phone.
2. Quality Assurance: We will discuss with you and supply you the best quality comfortable to your market.
3. Quick delivery: Time is money, we promise we always will deliver the goods quicker than others.
4. According to customers’ drawing,customized specifications are welcomed.
5. Small orders can be accepted.
Packing
Company Profile
SHEN ZHOU CZPT RUBBER & PLASTIC CO.,LTD was founded in 2000. The factory located in industrial zone of HangZhou city, ZheJiang province, china.
We have Plastic injection molding workshop and rubber compression molding workshops.Our main products includes Bakelit Knobs,Pull Handle,rubber door stops, door guard, roller, rubber bumpers, Rubber grommets, vibration dampers, seals, plastic corner, injection plastic brackets, injection plastic shell.to undertake various kinds of rubber molding and plastic injection parts, customize according to drawing and samples.
The products have been exported to America, Europe, Oceania, Middle East, Southeast Asia and other regions and countries, and hope to build more business Cooperation with new client from all over the world.
FAQ
Q1: Are you a manufacturer or a trading company?
A1: We are the original manufacturer of custom rubber parts and custom plastic parts.
Q2: Where is your company located?
A2: Our company is located in HangZhou City, ZheJiang Province, China.
Q3: Could I get free samples?
A3: We could provide small samples for free, but air freight or sea freight should be borne by customer side.
Q4: What should I provide in order to get an offer?
A4: Customers are required to provide material, inner diameter, outer diameter, cross section distance and quantity.
Q5: How is the goods packed by your factory?
A5: The goods are normally packed by plastic bags, carton boxes with pallets or wooden boxes.
Q6: What are the incoterms applied?
A6: The incoterms applied are FOB, CIF and CFR.
Q7: What are the payment terms accepted?
A7: We accept Alibaba Trade Assurance, T/T, L/C and West Union.
Q8: What about the delivery time?
A8: The goods are normally dellivered to customer side within 7-30 days based CZPT the mode of transport required.
Common Industries and Use Cases for Flexible Gear Couplings
Flexible gear couplings find widespread applications across various industries due to their ability to transmit torque efficiently while accommodating misalignments and reducing vibrations. Some of the common industries and specific use cases include:
1. Power Generation:
Flexible gear couplings are extensively used in power generation plants, including thermal power plants, hydroelectric power plants, and wind farms. They connect turbines, generators, and other rotating equipment, allowing for smooth power transmission and accommodating misalignments caused by thermal expansion or settling.
2. Steel and Metal Processing:
In steel and metal processing industries, flexible gear couplings are employed in rolling mills, continuous casting machines, and other heavy machinery. They handle the high torque and misalignments that occur during metal forming processes, providing reliable power transmission and reducing downtime.
3. Petrochemical and Oil & Gas:
These industries often deal with harsh environments, high temperatures, and corrosive substances. Flexible gear couplings with appropriate materials and coatings are used in pumps, compressors, and other critical equipment to ensure efficient power transmission and reliability.
4. Mining:
Mining operations involve large machines and heavy loads, requiring couplings that can handle substantial torque and misalignment. Flexible gear couplings are used in conveyor systems, crushers, and other mining equipment to maintain smooth and efficient operation.
5. Marine and Shipbuilding:
In marine applications, flexible gear couplings are used to connect marine diesel engines to propeller shafts. They absorb vibrations and misalignments caused by the motion of the ship, ensuring reliable power transmission and reduced wear on the propulsion system.
6. Pulp and Paper:
In the pulp and paper industry, flexible gear couplings are utilized in various stages of the papermaking process, including pulp refiners, digesters, and winding machines. They provide precision torque transmission and minimize vibrations, contributing to the efficiency of the paper production process.
These are just a few examples, and flexible gear couplings can be found in many other industries, such as cement, chemical, food and beverage, and more. Their versatility and ability to handle challenging conditions make them a preferred choice in various power transmission applications across industries.
Design Considerations for Selecting a Flexible Gear Coupling
When selecting a flexible gear coupling for a specific application, several design considerations are crucial to ensure optimal performance and reliability:
- Torque Capacity: Determine the maximum torque requirement of the application and choose a coupling with sufficient torque capacity to handle the transmitted loads without exceeding its limits.
- Speed: Consider the operating speed of the machinery and select a coupling that can handle the rotational speed without generating excessive heat or vibrations.
- Misalignment Tolerance: Assess the expected misalignment between the shafts in the system and choose a coupling that can accommodate both angular and parallel misalignments within acceptable limits.
- Service Environment: Evaluate the working conditions, including temperature, humidity, and the presence of corrosive agents, and select a coupling made from materials suitable for the specific environment.
- Space Limitations: Take into account the available space for the coupling installation and choose a compact design that fits within the available constraints.
- Alignment Maintenance: Consider the ease of alignment and maintenance requirements of the selected coupling. Some couplings may require more frequent maintenance than others.
- Backlash: Evaluate the application’s tolerance for backlash (angular play) in the coupling and select a design that meets the required precision.
- Torsional Stiffness: Determine the need for torsional stiffness in the system to avoid torsional vibrations and ensure accurate torque transmission.
- Resonance Avoidance: Identify potential resonance frequencies in the system and choose a coupling that helps avoid resonance, preventing amplified vibrations.
- Cost: Consider the budget constraints and compare the cost-effectiveness of different coupling options while ensuring the selected coupling meets all the necessary requirements.
By carefully considering these design factors, engineers and designers can choose the most suitable flexible gear coupling for their specific application, ensuring smooth operation, reduced maintenance, and extended equipment lifespan.
Flexible Gear Coupling: Function and Operation
A flexible gear coupling is a type of mechanical coupling used to connect two shafts in a power transmission system. It consists of two hubs with external gear teeth and an elastomeric flexible element between them. The flexible element can be made of materials such as polyurethane, rubber, or synthetic materials with high torsional flexibility and damping properties.
The function of a flexible gear coupling is to transmit torque between the connected shafts while accommodating misalignments and absorbing shocks and vibrations. When the shafts are misaligned due to angular, parallel, or axial displacements, the flexible element allows the hubs to move relative to each other, thus minimizing the transmission of misalignment forces to the connected machinery.
The operation of a flexible gear coupling involves the following steps:
- The torque from the driving shaft is transmitted to the first hub with external gear teeth.
- The external gear teeth on the first hub mesh with the internal gear teeth on the flexible element.
- As the flexible element deforms under torque and misalignment, it allows the second hub to rotate while maintaining contact with the first hub.
- The torque is then transmitted from the flexible element to the second hub, which drives the driven shaft.
The flexibility of the elastomeric element in a flexible gear coupling allows it to dampen vibrations and shocks that may occur during operation, thereby protecting the connected equipment from potential damage. Additionally, its ability to accommodate misalignment reduces stress on the shafts and bearings, extending the life of the power transmission system.
editor by CX 2023-09-01