China Hot selling Style 1n Standard Flexible Coupling

Product Description

 

Detailed Photos

 

 

 

Product Description

 

1.Style 1N standard flexible coupling provides flexible connection by the gap  between pipe groove and  coupling key.
 

2.Unique design allows both axial and radial movement, suitable for pipeline with flexibility under intermediate pressure.
 

3.Enhanced body resists 4 times working pressure.

Product Parameters

1.Housing material:Ductile iron conforming to ASTM A-536, grade 65-45-12.
 

2.FM Approved & UL Listed:R.W.P. rated working pressure 300PSI(2.065MPa / 20.65bars)
 

3.Housing Finish:Fusion Bonded Epoxy Coated(Optional:Hot Deep Galvanized and Others)
 

4.Coupling gasket material:EPDM(Optional:Nitrile NBR,Silicone and Others)
 

5.Bolts and Nuts:Heat treated and electro galvanized bolts with oval neck, and heavy duty hexagon nuts. Track head  meeting the physical and chemical requirements of ASTM A-449 and physical requirements of ASTM A-183.
 

6.Size Range:DN25 through DN300 (1″ through 12″)

Certifications

 

Company Profile

CONDOR brand Grooved products are developed and manufactured by ZheJiang Condor Machinery Imp.& Exp. Co., Ltd., which is established in 2009 and most professional manufacturing enterprise of piping products. CONDOR is the 1 of first grooved products manufacturer in China,equipped with most advanced casting, milling, painting and assembling facilities, including 3 DISA automatic molding line, semi-automatic casting machine, precision casting line, large size floor molding system and relevant comprehensive testing equipment.

CONDOR owns 2 casting factories, 1 rubber millingfacility and 2 assembling centers. Over 500 employees, annual casting productioncapacity 100,000tons. Our total floor space over 110,000m², annual turnover exceeds 120 million USDCompany services
 

CONODR Piping Systems Solutions span many markets. Our piping system are found CHINAMFG in multiple applications-from commercial comfort piping system; industrial process and utility piping; petrochemical and metallurgy industries; coal and mineral mining operations; water and wastewater plants and facilities. CONDOR Piping Systems Solution covers fire-hydrant and sprinkler system, water spray and water mist system, foam and gas system .For all systems CONDOR offers unique solution for each

individual practice and actual problem.

 

CONDOR brand Grooved products are designed, manufactured, managed strictly by UL listed and FM approved system under

ZheJiang Condor Machinery Imp.& Exp. Co., Ltd.

 

 

FAQ

1. Q: Are you a manufacturer or trading company?
A: We are valve manufacturer and factory, and not trading company.
2. Q: Do you have agent or representative abroad?
A: We do not have agent abroad, please contact us to purchase valves directly.

3. Q: What’s your product range?

A: We can produce Butterfly valve, Gate valve, Check valve, Control valve, Y strainer, By ISO/ANSI/DIN/JIS/ EN/GOST/AS standard.
4. Q: Is there any stock in your factory? And how about your lead time?
A: We stock valves with normal sizes. The lead time depends on your quantity, Generally about 30 days.
5. Q: Which countries do you export to?
A: We export directly to vast majority of countries in the world.
6. Q: What certificates will you provide?
A: We can provide UL FM.
7. Q: After-sales service
A: 18 months year warranty for all kinds of products.
As an experienced manufacturer, you can rest assured of the quality and sales service.
8. Q: Transportation
A: Transported by DHL, UPS, EMS, FedEx, SF, by Air, by Sea.
9. Q: Do you provide free sample?
A: Free sample is OK for us.
10. Q: Do you accept custom design on size?
A: Yes, if the size is reasonable.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How does a flexible coupling handle electrical insulation between shafts?

Flexible couplings are typically not designed to provide electrical insulation between shafts. In most cases, flexible couplings are used solely for the purpose of transmitting mechanical power from one shaft to another while accommodating misalignment and absorbing shocks and vibrations. They do not offer any electrical isolation or insulation properties.

When electrical insulation is required between two rotating shafts in a system, additional components or specialized couplings are used. For applications where electrical isolation is necessary, insulated couplings or special insulation components can be employed. These types of couplings feature insulating materials, coatings, or designs that prevent electrical current from flowing between the connected shafts.

Insulated couplings can be beneficial in certain applications, such as electric motor drives or systems involving sensitive electronics. They help prevent stray currents, ground loops, and electrical interference that could potentially damage equipment or affect the accuracy of electronic signals. However, it is important to note that not all flexible couplings provide this electrical insulation capability, and users should carefully select couplings that meet the specific electrical isolation requirements of their application.

Summary: Flexible couplings, as standard mechanical components, do not inherently provide electrical insulation between shafts. They are primarily used for mechanical power transmission and misalignment compensation. If electrical insulation is needed between rotating shafts, insulated couplings or specialized components with insulating properties should be chosen to meet the specific requirements of the application.

flexible coupling

What are the differences between flexible couplings and rigid couplings in terms of performance?

Flexible couplings and rigid couplings are two distinct types of couplings used in mechanical systems, and they differ significantly in terms of performance and applications.

  • Torsional Flexibility: The primary difference between flexible and rigid couplings lies in their ability to handle misalignments and torsional flexibility. Flexible couplings are designed with elements, such as elastomeric inserts or metal bellows, that can deform or twist to accommodate shaft misalignments, angular offsets, and axial movements. On the other hand, rigid couplings do not have any flexibility and maintain a fixed connection between the shafts, which means they cannot compensate for misalignment.
  • Misalignment Compensation: Flexible couplings can absorb and mitigate misalignment between shafts, reducing stress and wear on connected components. In contrast, rigid couplings require precise alignment during installation, and any misalignment can lead to increased loads on the shafts and bearings, potentially leading to premature failure.
  • Vibration Damping: Flexible couplings, especially those with elastomeric elements, offer damping properties that can absorb and dissipate vibrations. This damping capability reduces the transmission of vibrations and shocks through the drivetrain, improving the overall system performance and protecting connected equipment. Rigid couplings, being solid and without damping elements, do not provide this vibration damping effect.
  • Backlash: Flexible couplings can have some degree of backlash due to their flexibility, particularly in certain designs. Backlash is the play or free movement between connected shafts. In contrast, rigid couplings have minimal or no backlash, providing a more precise and immediate response to changes in rotational direction.
  • Torque Transmission: Rigid couplings are more efficient in transmitting torque since they do not have any flexible elements that can absorb some torque. Flexible couplings, while capable of transmitting substantial torque, may experience some power loss due to the deformation of their flexible components.
  • Applications: Flexible couplings are widely used in applications that require misalignment compensation, damping, and shock absorption, such as pumps, motors, and industrial machinery. On the other hand, rigid couplings are used in situations where precise alignment is critical, such as connecting shafts of well-aligned components or shafts that require synchronous operation, like in some encoder applications.

In summary, flexible couplings excel in applications where misalignment compensation, vibration damping, and shock absorption are required. They are more forgiving in terms of alignment errors and can accommodate dynamic loads. Rigid couplings, on the other hand, are used in situations where precise alignment and zero backlash are essential, ensuring direct and immediate power transmission between shafts.

flexible coupling

How does a flexible coupling protect connected equipment from shock loads and vibrations?

Flexible couplings play a crucial role in protecting connected equipment from shock loads and vibrations by providing damping and isolation capabilities. When machines or mechanical systems experience sudden shock loads or vibrations, the flexible coupling acts as a buffer, absorbing and dissipating the impact, thereby reducing the transmitted forces and protecting the equipment. Here’s how flexible couplings achieve this:

  • Damping of Vibrations: Flexible couplings are often made from materials that exhibit damping properties. When vibrations are transmitted through the shafts, the flexible coupling’s material can absorb a portion of the vibrational energy, converting it into heat. This dissipation of energy helps reduce the amplitude of the vibrations and prevents them from propagating further into the connected equipment.
  • Vibration Isolation: In addition to damping vibrations, flexible couplings also offer a degree of vibration isolation. They are designed to decouple the two shafts, which means that vibrations occurring on one shaft are not directly transmitted to the other shaft. This isolation effect prevents vibrations from propagating across the entire system and minimizes the impact on sensitive equipment or nearby components.
  • Shock Absorption: When the connected machinery experiences sudden shock loads, such as during a startup or abrupt changes in load, the flexible coupling can act as a shock absorber. The coupling’s design allows it to deform slightly under the impact, absorbing and distributing the shock energy. This prevents the shock from being directly transferred to the connected equipment, reducing the risk of damage or premature wear.
  • Misalignment Compensation: Flexible couplings are capable of compensating for misalignment between the shafts. Misalignment can lead to additional stresses and vibrations in the system. By allowing for some degree of angular, parallel, and axial misalignment, the flexible coupling reduces the forces transmitted to the connected equipment and the supporting structures.
  • Reduction of Resonance Effects: Resonance is a phenomenon that occurs when the natural frequency of a system matches the frequency of external vibrations, leading to amplified vibrations. Flexible couplings can help avoid resonance effects by altering the system’s natural frequency and providing some level of flexibility that damps the resonance response.

By incorporating a flexible coupling into the drivetrain or power transmission system, equipment manufacturers and operators can significantly improve the reliability and longevity of connected machinery. The coupling’s ability to dampen vibrations, isolate shocks, and compensate for misalignment contributes to a smoother and more stable operation, reducing maintenance requirements and enhancing overall system performance.

In summary, flexible couplings act as protective elements, shielding connected equipment from shock loads and vibrations. Their ability to dampen vibrations, isolate shocks, and compensate for misalignment contributes to a smoother and more reliable operation of various mechanical systems.

China Hot selling Style 1n Standard Flexible Coupling  China Hot selling Style 1n Standard Flexible Coupling
editor by CX 2024-03-18


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *